Abstract
Author SummaryDNA damages can lead to the stalling of the cellular replication machinery if not repaired on time, inducing DNA strand breaks, recombination that can result in gross chromosomal rearrangements, even cell death. In order to guard against this outcome, cells have evolved several precautionary mechanisms. One of these involves the activity of special DNA polymerases—known as translesion synthesis (TLS) polymerases. In contrast to the replicative polymerases responsible for faithfully duplicating the genome, these can carry out DNA synthesis even on a damaged template. For that to occur, they have to take over synthesis from the replicative polymerase that is stalled at a DNA lesion. Although this mechanism allows DNA synthesis to proceed, TLS polymerases work with a high error rate even on undamaged DNA, leading to alterations of the original sequence that can result in cancer. Consequently, the exchange between replicative and special polymerases has to be highly regulated, and the details of this are largely unknown. Here we identified Def1—a protein involved in the degradation of RNA polymerase II—as a prerequisite for error-prone DNA synthesis in yeast. We showed that after treating the cells with a DNA damaging agent, Def1 promoted the degradation of the catalytic subunit of the replicative DNA polymerase δ, without affecting the other two subunits of the polymerase. Our data suggest that the special polymerases can take over synthesis only after the catalytic subunit of the replicative polymerase is removed from the stalled fork in a regulated manner. We predict that the other two subunits remain at the fork and participate in TLS together with the special polymerases.
Highlights
The stalling of the replication machinery that occurs as a consequence of encountering unrepaired DNA damages is a challenging problem for cells
Our genetic studies placed DEF1 in the RAD6– RAD18-dependent DNA damage tolerance pathway, where it played an indispensible role during induced mutagenesis
We established that Pol3, the catalytic subunit of the replicative DNA polymerase polymerase d (Pold), was degraded upon ultraviolet light (UV) irradiation
Summary
The stalling of the replication machinery that occurs as a consequence of encountering unrepaired DNA damages is a challenging problem for cells. Cells have evolved different mechanisms that can sustain DNA replication on damaged templates. These so-called DNA damage tolerance or DNA damage bypass processes allow replication to continue on damaged DNA without removing the damage. DNA damage tolerance is achieved through two main mechanisms: template switching and translesion synthesis (TLS). Template switching is inherently error-free, as replication continues by using the undamaged nascent sister chromatid as a template for the bypass of the lesion [1], whereas during TLS, specialized polymerases take over the nascent primer end from the replicative polymerase and carry out synthesis opposite the DNA lesion in an error-free or error-prone way [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.