Abstract
Malware is one of the threats to security of computer networks and information systems. Since malware instances are available sufficiently, there is increased interest among researchers on usage of Artificial Intelligence (AI). Of late AI-enabled methods such as machine learning (ML) and deep learning paved way for solving many real-world problems. As it is a learning-based approach, accumulated training samples help in improving thequality of training and thus leveraging malware detection accuracy. Existing deep learning methods are focusing on learning-based malware detection systems. However, there is need for improving the state of the art through ensemble approach. Towards this end, in this paper we proposed a framework known as Deep Ensemble Framework (DEF) for automatic malware detection. The framework obtains features from training samples. From given malware instance a grayscale image is generated. There is another process to extract the opcode sequences. Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) techniques are used to obtain grayscale image and opcode sequence respectively. Afterwards, a stacking ensemble is employed in order to achieve efficient malware detection and classification. Malware samples collected from the Internet sources and Microsoft are used for the empirical study. An algorithm known as Ensemble Learning for Automatic Malware Detection (EL-AML) is proposed to realize our framework. Another algorithm named Pre-Process is proposed to assist the ELAML algorithm for obtaining intermediate features required by CNN and LSTM. Empirical study reveals that our framework outperforms many existing methods in terms of speed-up and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of Computer Networks & Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.