Abstract

In this study, self-assembled systems of human serum albumin (HSA) and spin-labeled fatty acids are characterized by double electron–electron resonance (DEER). HSA, being the most important transport protein of the human blood, is capable to host up to seven paramagnetic fatty acid derivatives. DEER measurements of these self-assembled multispin clusters are strongly affected by correlations of more than two spins, the evaluation of the latter constituting the central topic of this paper. While the DEER modulation depth can be used to obtain qualitative information of the number of coupled spins, the quantitative analysis is hampered by the occurrence of cluster mixtures with different numbers of coupled spins and contributions from unbound spin-labeled material. Applying flip angle dependent DEER measurements, unwanted multispin correlations were found to lead not only to a broadening of the distance peaks but also to cause small distances to be overestimated and large distances to be suppressed. It is thus favorable to use spin-diluted systems with an average of two paramagnetic molecules per spin cluster when a quantitative analysis of the distance distribution is sought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.