Abstract

Full regeneration of deer antlers, a bona fide epimorphic process in mammals, is in defiance of the general rule of nature. Revealing the mechanism underlying this unique exception would place us in a better position to promote organ regeneration in humans. Antler regeneration takes place in yearly cycles from its pedicle, a permanent protuberance on the frontal bone. Both growing antlers and pedicles consist of internal (cartilage and bone) and external components (skin, blood vessels, and nerves). Recent studies have demonstrated that the regeneration of both internal and external components relies on the presence of pedicle periosteum (PP). PP cells express key embryonic stem cell markers (Oct4, Nanog, and SOX2) and are multipotent, so are termed antler stem cells. Now it is clear that proliferation and differentiation of PP cells directly forms internal antler components; however, how PP initiates and maintains the regeneration of external antler components is thus far not known. Based on the direct as well as indirect evidence that is presented in this review, I put forward the following hypothesis to address this issue. The full regenerative ability of external antler tissue components is achieved through PP-derived chemical induction and PP-derived mechanical stimulation: the former triggers the regeneration of these external components, whereas the latter drives their rapid elongation. Eventual identification of the putative PP-derived chemical factors would open up a new avenue for devising effective therapies for lesions involving each of these tissue components, be they traumatic, degenerative, or linked to developmental (genetic) anomalies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.