Abstract

Constraining the response time of the climate system to changes in North Atlantic Deep Water (NADW) formation is fundamental to improving climate and Atlantic Meridional Overturning Circulation predictability. Here we report a new synchronization of terrestrial, marine, and ice-core records, which allows the first quantitative determination of the response time of North Atlantic climate to changes in high-latitude NADW formation rate during the last deglaciation. Using a continuous record of deep water ventilation from the Nordic Seas, we identify a ∼400-year lead of changes in high-latitude NADW formation ahead of abrupt climate changes recorded in Greenland ice cores at the onset and end of the Younger Dryas stadial, which likely occurred in response to gradual changes in temperature- and wind-driven freshwater transport. We suggest that variations in Nordic Seas deep-water circulation are precursors to abrupt climate changes and that future model studies should address this phasing.

Highlights

  • Constraining the response time of the climate system to changes in North Atlantic Deep Water (NADW) formation is fundamental to improving climate and Atlantic Meridional Overturning Circulation predictability

  • We present a new synchronization of high-latitude NADW, climate, and pCO2 records for the last deglaciation based on new marine and ice core data that allows us to conclude for the first time that changes in deep-water circulation in the Nordic Seas led rapid shifts in North Atlantic climate and changes in carbon cycling

  • Site MD99-2284, which is characterised by exceptionally high sedimentation rates (>400 cm kyr-1), is located at the gateway of the Faroe-Shetland Channel (FSC), where warm surface Atlantic water flows into the Nordic Seas and cold dense water overflows into the North Atlantic

Read more

Summary

Introduction

Constraining the response time of the climate system to changes in North Atlantic Deep Water (NADW) formation is fundamental to improving climate and Atlantic Meridional Overturning Circulation predictability. We report a new synchronization of terrestrial, marine, and ice-core records, which allows the first quantitative determination of the response time of North Atlantic climate to changes in high-latitude NADW formation rate during the last deglaciation. Precise reconstructions that resolve the relative timing of changes in North Atlantic Ocean circulation, climate, and carbon cycling are necessary to anticipate the mechanisms initiating and propagating abrupt global climate changes. We present a new synchronization of high-latitude NADW, climate, and pCO2 records for the last deglaciation based on new marine and ice core data that allows us to conclude for the first time that changes in deep-water circulation in the Nordic Seas led rapid shifts in North Atlantic climate and changes in carbon cycling

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.