Abstract

Vascular endothelial growth factor (VEGF) is involved in the development and progression of various diseases, including cancer, diabetic retinopathy, macular degeneration and arthritis. Understanding the role of VEGF in various disorders has led to the development of effective treatments, including anti-VEGF drugs, which have significantly improved therapeutic methods. Accurate VEGF identification is critical, yet experimental identification is expensive and time-consuming. This study presents Deep-VEGF, a novel computational model for VEGF prediction based on deep-stacked ensemble learning. We formulated two datasets using primary sequences. A novel feature descriptor named K-Space Tri Slicing-Bigram position-specific scoring metrix (KSTS-BPSSM) is constructed to extract numerical features from primary sequences. The model training is performed by deep learning techniques, including gated recurrent unit (GRU), generative adversarial network (GAN) and convolutional neural network (CNN). The GRU and CNN are ensembled using stacking learning approach. KSTS-BPSSM-based ensemble model secured the most accurate predictive outcomes, surpassing other competitive predictors across both training and testing datasets. This demonstrates the potential of leveraging deep learning for accurate VEGF prediction as a powerful tool to accelerate research, streamline drug discovery and uncover novel therapeutic targets. This insightful approach holds promise for expanding our knowledge of VEGF's role in health and disease. Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.