Abstract
Protein model quality assessment is a key component of protein structure prediction. In recent research, the voxelization feature was used to characterize the local structural information of residues, but it may be insufficient for describing residue-level topological information. Design features that can further reflect residue-level topology when combined with deep learning methods are therefore crucial to improve the performance of model quality assessment. We developed a deep-learning method, DeepUMQA, based on Ultrafast Shape Recognition (USR) for the residue-level single-model quality assessment. In the framework of the deep residual neural network, the residue-level USR feature was introduced to describe the topological relationship between the residue and overall structure by calculating the first moment of a set of residue distance sets and then combined with 1D, 2D and voxelization features to assess the quality of the model. Experimental results on the CASP13, CASP14 test datasets and CAMEO blind test show that USR could supplement the voxelization features to comprehensively characterize residue structure information and significantly improve model assessment accuracy. The performance of DeepUMQA ranks among the top during the state-of-the-art single-model quality assessment methods, including ProQ2, ProQ3, ProQ3D, Ornate, VoroMQA, ProteinGCN, ResNetQA, QDeep, GraphQA, ModFOLD6, ModFOLD7, ModFOLD8, QMEAN3, QMEANDisCo3 and DeepAccNet. The DeepUMQA server is freely available at http://zhanglab-bioinf.com/DeepUMQA/. Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.