Abstract

Ultrasound computed tomography is an inexpensive and radiation-free medical imaging technique used to quantify the tissue acoustic properties for advanced clinical diagnosis. Image reconstruction in ultrasound tomography is often modeled as an optimization scheme solved by iterative methods like full-waveform inversion. These iterative methods are computationally expensive, while the optimization problem is ill-posed and nonlinear. To address this problem, we propose to use deep learning to overcome the computational burden and ill-posedness, and achieve near real-time image reconstruction in ultrasound tomography. We aim to directly learn the mapping from the recorded time-series sensor data to a spatial image of acoustical properties. To accomplish this, we develop a deep learning model using two cascaded convolutional neural networks with an encoder–decoder architecture. We achieve a good representation by first extracting the intermediate mapping-knowledge and later utilizing this knowledge to reconstruct the image. This approach is evaluated on synthetic phantoms where simulated ultrasound data are acquired from a ring of transducers surrounding the region of interest. The measurement data is acquired by forward modeling the wave equation using the k-wave toolbox. Our simulation results demonstrate that our proposed deep-learning method is robust to noise and significantly outperforms the state-of-the-art traditional iterative method both quantitatively and qualitatively. Furthermore, our model takes substantially less computational time than the conventional full-wave inversion method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.