Abstract

Digitization of pathological slides has promoted the research of computer-aided diagnosis, in which artificial intelligence analysis of pathological images deserves attention. Appropriate deep learning techniques in natural images have been extended to computational pathology. Still, they seldom take into account prior knowledge in pathology, especially the analysis process of lesion morphology by pathologists. Inspired by the diagnosis decision of pathologists, we design a novel deep learning architecture based on tree-like strategies called DeepTree. It imitates pathological diagnosis methods, designed as a binary tree structure, to conditionally learn the correlation between tissue morphology, and optimizes branches to finetune the performance further. To validate and benchmark DeepTree, we build a dataset of frozen lung cancer tissues and design experiments on a public dataset of breast tumor subtypes and our dataset. Results show that the deep learning architecture based on tree-like strategies makes the pathological image classification more accurate, transparent, and convincing. Simultaneously, prior knowledge based on diagnostic strategies yields superior representation ability compared to alternative methods. Our proposed methodology helps improve the trust of pathologists in artificial intelligence analysis and promotes the practical clinical application of pathology-assisted diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.