Abstract

AbstractThe goal of confining light at the deep‐subwavelength scale while retaining moderate attenuation has been pursued for years in the field of plasmonics. However, few feasible configurations at present are excellent at balancing the tradeoff between confinement and loss. This work proposes to overcome the above limitation by using hybrid wedge structures, which consist of triangular metal wedges loaded with nanometric low/high‐index dielectric claddings. Owing to the superior guiding properties of wedge plasmons in conjunction with high refractive index contrast near wedge tips, the modal sizes can be squeezed into significantly smaller spaces than those of their conventional wedge and planar hybrid counterparts, while simultaneously featuring propagation distances over tens of micrometers at telecommunication wavelengths. Studies on the evolution from a single metallic wedge to semiconductor–insulator–metal wedge(s) reveal strategies for continuous improvement of the optical performance. Discussions concerning practical issues including crosstalk and mode excitation have further elucidated their potential in building high‐performance nanophotonic components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.