Abstract

We propose a novel hybrid plasmonic waveguide with metal-semiconductor ribs. We investigated the modal properties of the proposed structure and the threshold property for plasmonic nanolaser applications by using the finite element method. The results reveal that the structure enables deep-subwavelength mode confinement with low propagation loss and low threshold. By optimizing the geometric parameters of the structure, the mode area can reach 0.000 29λ2 with a threshold of 700.9/cm at the wavelength of 1.55 μm. Compared to the previously studied hybrid plasmonic waveguide, tighter mode confinement and lower propagation loss is simultaneously achieved for the structure with the same geometric parameters. The designed structure can be used as a low-threshold nanolaser and has promising potential for applications in active plasmonic systems and optoelectronic integrated circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call