Abstract

In an emergency room (ER) setting, stroke triage or screening is a common challenge. A quick CT is usually done instead of MRI due to MRI's slow throughput and high cost. Clinical tests are commonly referred to during the process, but the misdiagnosis rate remains high. We propose a novel multimodal deep learning framework, DeepStroke, to achieve computer-aided stroke presence assessment by recognizing patterns of minor facial muscles incoordination and speech inability for patients with suspicion of stroke in an acute setting. Our proposed DeepStroke takes one-minute facial video data and audio data readily available during stroke triage for local facial paralysis detection and global speech disorder analysis. Transfer learning was adopted to reduce face-attribute biases and improve generalizability. We leverage a multi-modal lateral fusion to combine the low- and high-level features and provide mutual regularization for joint training. Novel adversarial training is introduced to obtain identity-free and stroke-discriminative features. Experiments on our video-audio dataset with actual ER patients show that DeepStroke outperforms state-of-the-art models and achieves better performance than both a triage team and ER doctors, attaining a 10.94% higher sensitivity and maintaining 7.37% higher accuracy than traditional stroke triage when specificity is aligned. Meanwhile, each assessment can be completed in less than six minutes, demonstrating the framework's great potential for clinical translation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.