Abstract

This paper presents DeepStream, a novel data stream temporal clustering algorithm that dynamically detects sequential and overlapping clusters. DeepStream is tuned to classify contextual information in real time and is capable of coping with a high-dimensional feature space. DeepStream utilizes stacked autoencoders to reduce the dimensionality of unbounded data streams and for cluster representation. This method detects contextual behavior and captures nonlinear relations of the input data, giving it an advantage over existing methods that rely on PCA. We evaluated DeepStream empirically using four sensor and IoT datasets and compared it to five state-of-the-art stream clustering algorithms. Our evaluation shows that DeepStream outperforms all of these algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.