Abstract
Protein-protein interaction (PPI) plays an important role in almost all life activities. Many protein interaction sites have been confirmed by biological experiments, but these PPI site identification methods are time-consuming and expensive. In this study, a deep learning-based PPI prediction method, named DeepSG2PPI, is developed. Firstly, the protein sequence information is retrieved and the local context information of each amino acid residue is calculated. A two-dimensional convolutional neural network (2D-CNN) model is employed to extract features from a two-channel coding structure, in which an attention mechanism is embedded to assign higher weights to key features. Secondly, the global statistical information of each amino acid residue and the relationship graph between the protein and GO (Gene Ontology) function annotation are built, and the graph embedding vector is constructed to represent the biological features of the protein. Finally, a 2D-CNN model and two 1D-CNN models are combined for PPI prediction. The comparison analysis with existing algorithms shows that the DeepSG2PPI method has better performance. It provides more accurate and effective PPI site prediction, which will be helpful in reducing the cost and failure rate of biological experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.