Abstract

Two very large deep-seated gravitational slope deformations in the highlands of the Mérida Andes, Venezuela, are herein described: the Mucubají Pass and Cerro La Camacha. These slope movements have slid in post-Last Glacial Maximum times. In addition, both landslides are in very close association with the active Boconó Fault trace. The Cerro La Camacha (Camacha Range) landslide is fault bounded along its northwest flank, whereas the Mucubají pass mass movement is even cut by the active fault trace. The almost 10 km long Mucubají slide mobilizes LGM moraine deposits along the unconformable basement contact. La Camacha slope movement is a sackung-type landslide, involving two huge masses that affect the entire northwestern slope of the La Camacha Range. This sackung is at least 20 km long, paralleling the active Boconó Fault trace. Combination of high relief energy (gravitational forces) and seismic shaking related to an on-site active fault could be responsible for the destabilization of the slopes or massif in both cases. Although the seismically-induced (re-)activation of the La Camacha landslide is very likely, there is no proof for that yet. Conversely, the Mucubají slide shows geomorphic, geodetic and sedimentary evidence of episodic activity in recent times, which could be ascribed to seismic triggering. In the particular case of the La Camacha sackung, the combination of dextral slip along the Boconó Fault and a SE-dipping fault plane could additionally favor the destabilization of the NW slope of the La Camacha Range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call