Abstract

This paper investigates the use of deep reinforcement learning (DRL) in the design of a universal MAC protocol referred to as Deep-reinforcement Learning Multiple Access (DLMA). The design framework is partially inspired by the vision of DARPA SC2, a 3-year competition whereby competitors are to come up with a clean-slate design that best share spectrum with any network(s), in any environment, without prior knowledge, leveraging on machine-learning technique. While the scope of DARPA SC2 is broad and involves the redesign of PHY, MAC, and Network layers, this paper's focus is narrower and only involves the MAC design. In particular, we consider the problem of sharing time slots among a multiple of time-slotted networks that adopt different MAC protocols. One of the MAC protocols is DLMA. The other two are TDMA and ALOHA. The DRL agents of DLMA do not know that the other two MAC protocols are TDMA and ALOHA. Yet, by a series of observations of the environment, its own actions, and the rewards - in accordance with the DRL algorithmic framework - a DRL agent can learn the optimal MAC strategy for harmonious co-existence with TDMA and ALOHA nodes. In particular, the use of neural networks in DRL (as opposed to traditional reinforcement learning) allows for fast convergence to optimal solutions and robustness against perturbation in hyper- parameter settings, two essential properties for practical deployment of DLMA in real wireless networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.