Abstract

Precise quantification of tree-like structures from biomedical images, such as neuronal shape reconstruction and retinal blood vessel caliber estimation, is increasingly important in understanding normal function and pathologic processes in biology. Some handcrafted methods have been proposed for this purpose in recent years. However, they are designed only for a specific application. In this paper, we propose a shape analysis algorithm, DeepRayburst, that can be applied to many different applications based on a Multi-Feature Rayburst Sampling (MFRS) and a Dual Channel Temporal Convolutional Network (DC-TCN). Specifically, we first generate a Rayburst Sampling (RS) core containing a set of multidirectional rays. Then the MFRS is designed by extending each ray of the RS to multiple parallel rays which extract a set of feature sequences. A Gaussian kernel is then used to fuse these feature sequences and outputs one feature sequence. Furthermore, we design a DC-TCN to make the rays terminate on the surface of tree-like structures according to the fused feature sequence. Finally, by analyzing the distribution patterns of the terminated rays, the algorithm can serve multiple shape analysis applications of tree-like structures. Experiments on three different applications, including soma shape reconstruction, neuronal shape reconstruction, and vessel caliber estimation, confirm that the proposed method outperforms other state-of-the-art shape analysis methods, which demonstrate its flexibility and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.