Abstract
The quantification of changes in protein abundance in complex biological specimens is essential for proteomic studies in basic and applied research. Here we report on the development and validation of the DeepQuanTR software for identification and quantification of differentially expressed proteins using LC-MALDI-MS. Following enzymatic digestion, HPLC peptide separation and normalization of MALDI-MS signal intensities to the ones of internal standards, the software extracts peptide features, adjusts differences in HPLC retention times and performs a relative quantification of features. The annotation of multiple peptides to the corresponding parent protein allows the definition of a Protein Quant Value, which is related to protein abundance and which allows inter-sample comparisons. The performance of DeepQuanTR was evaluated by analyzing 24 samples deriving from human serum spiked with different amounts of four proteins and eight complex samples of vascular proteins, derived from surgically resected human kidneys with cancer following ex vivo perfusion with a reactive ester biotin derivative. The identification and experimental validation of proteins, which were differentially regulated in cancerous lesions as compared with normal kidney, was used to demonstrate the power of DeepQuanTR. This software, which can easily be used with established proteomic methodologies, facilitates the relative quantification of proteins derived from a wide variety of different samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.