Abstract
Operational monitoring of pipelines can prevent environmental and economic losses. However, pipeline data have the characteristics of high dimension and nonlinear coupling, which makes it difficult to determine the relationship between the data and process, resulting in a high rate of misjudgment of the operating condition. To address this issue, an operating condition recognition model based on kernel principal component analysis (KPCA)-convolutional neural network (CNN) is proposed. Deeppipe refers to the use of deep learning algorithms to solve pipeline-related problems. Considering the spatial and time-series characteristics of the pipeline, the inlet and outlet pressure matrixes of the initial station, intermediate station, and terminal station are constructed. Subsequently, the features of the pressure matrix in the time domain, frequency domain, and energy domain are extracted. KPCA is employed to obtain the reconstructed feature matrix, which is used as the input of the proposed CNN recognition model. Taking two multiproduct pipelines as examples, the effectiveness of the KPCA-CNN recognition model is verified while compared with traditional nonlinear classification models (e.g., artificial neural network, decision tree, random forest, and others). The results show that the proposed model has the highest accuracy, precision, recall, and F1 score, and all reach 100%, which has a certain guiding significance for the monitoring and management of onsite pipelines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pipeline Systems Engineering and Practice
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.