Abstract

Fringe pattern based measurement techniques are the state-of-the-art in full-field optical metrology. They are crucial both in macroscale, e.g., fringe projection profilometry, and microscale, e.g., label-free quantitative phase microscopy. Accurate estimation of the local fringe orientation map can significantly facilitate the measurement process in various ways, e.g., fringe filtering (denoising), fringe pattern boundary padding, fringe skeletoning (contouring/following/tracking), local fringe spatial frequency (fringe period) estimation, and fringe pattern phase demodulation. Considering all of that, the accurate, robust, and preferably automatic estimation of local fringe orientation map is of high importance. In this paper we propose a novel numerical solution for local fringe orientation map estimation based on convolutional neural network and deep learning called DeepOrientation. Numerical simulations and experimental results corroborate the effectiveness of the proposed DeepOrientation comparing it with a representative of the classical approach to orientation estimation called combined plane fitting/gradient method. The example proving the effectiveness of DeepOrientation in fringe pattern analysis, which we present in this paper, is the application of DeepOrientation for guiding the phase demodulation process in Hilbert spiral transform. In particular, living HeLa cells quantitative phase imaging outcomes verify the method as an important asset in label-free microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.