Abstract
Surgical workflow recognition and context-aware systems could allow better decision making and surgical planning by providing the focused information, which may eventually enhance surgical outcomes. While current developments in computer-assisted surgical systems are mostly focused on recognizing surgical phases, they lack recognition of surgical workflow sequence and other contextual element, e.g., "Instruments." Our study proposes a hybrid approach, i.e., using deep learning and knowledge representation, to facilitate recognition of the surgical workflow. We implemented "Deep-Onto" network, which is an ensemble of deep learning models and knowledge management tools, ontology and production rules. As a prototypical scenario, we chose robot-assisted partial nephrectomy (RAPN). We annotated RAPN videos with surgical entities, e.g., "Step" and so forth. We performed different experiments, including the inter-subject variability, to recognize surgical steps. The corresponding subsequent steps along with other surgical contexts, i.e., "Actions," "Phase" and "Instruments," were also recognized. The system was able to recognize 10 RAPN steps with the prevalence-weighted macro-average (PWMA) recall of 0.83, PWMA precision of 0.74, PWMA F1 score of 0.76, and the accuracy of 74.29% on 9 videos of RAPN. We found that the combined use of deep learning and knowledge representation techniques is a promising approach for the multi-level recognition of RAPN surgical workflow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.