Abstract

Deep learning offers the potential to extract more than meets the eye from images captured by imaging flow cytometry. This protocol describes the application of deep learning to single-cell images to perform supervised cell classification and weakly supervised learning, using example data from an experiment exploring red blood cell morphology. We describe how to acquire and transform suitable input data as well as the steps required for deep learning training and inference using an open-source web-based application. All steps of the protocol are provided as open-source Python as well as MATLAB runtime scripts, through both command-line and graphic user interfaces. The protocol enables a flexible and friendly environment for morphological phenotyping using supervised and weakly supervised learning and the subsequent exploration of the deep learning features using multi-dimensional visualization tools. The protocol requires 40 h when training from scratch and 1 h when using a pre-trained model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.