Abstract

RNA modification plays an indispensable role in the regulation of organisms. RNA modification site prediction offers an insight into diverse cellular processing. Regarding different types of RNA modification site prediction, it is difficult to tell the most relevant feature combinations from a variant of RNA properties. Thereby, the performance of traditional machine learning based predictors relied on the skill of feature engineering. As a data-driven approach, deep learning can detect optimal feature patterns to represent input data. In this study, we developed a predictor for multiple types of RNA modifications method called DeepMRMP (Multiple Types RNA Modification Sites Predictor), which is based on the bidirectional Gated Recurrent Unit (BGRU) and transfer learning. DeepMRMP makes full use of multiple RNA site modification data and correlation among them to build predictor for different types of RNA modification sites. Through 10-fold cross-validation of the RNA sequences of H. sapiens, M. musculus and S. cerevisiae, DeepMRMP acted as a reliable computational tool for identifying N1-methyladenosine (m1A), pseudouridine (Ψ), 5-methylcytosine (m5C) modification sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.