Abstract
Drug–target interaction (DTI) prediction reduces the cost and time of drug development, and plays a vital role in drug discovery. However, most of research does not fully explore the molecular structures of drug compounds in DTI prediction. To this end, we propose a deep learning model to capture the molecular structure information of drug compounds for DTI prediction. This model utilizes a transformer network incorporating multilayer graph information, which captures the features of a drug's molecular structure so that the interactions between atoms of drug compounds can be explored more deeply. At the same time, a convolutional neural network is employed to capture the local residue information in the target sequence, and effectively extract the feature information of the target. The experiments on the DrugBank dataset showed that the proposed model outperformed previous models based on the structure of target sequences. The results indicate that the improved transformer network fuses the feature information between layers in the graph convolutional neural network and extracts the interaction data for the molecular structure. The drug repositioning experiment on COVID-19 and Alzheimer's disease demonstrated the proposed model's ability to find therapeutic drugs in drug discovery. The code of our model is available at https://github.com/zhangpl109/DeepMGT-DTI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.