Abstract

AbstractThe detection of malware android became very crucial with the use of obfuscation techniques by developers of malicious applications. In the literature several approaches have been proposed to take into account certain techniques. But it is difficult to take into account all obfuscation techniques because of mutations and this is a critical challenge for cybersecurity. In this contribution, we proposed an approach to detect obfuscated malicious applications. This approach is based on the memory dump process. This process helps to discover the behaviour of obfuscated applications while they are executing without targeting a particular obfuscation technique. We implemented our application using supervised neural networks. We tested and selected hyper-parameters to train our detection model. The different results obtained by the evaluation metrics such as accuracy, precision, recall and F1 score, are excellent with high values around 99%.KeywordsAndroid malware detectionObfuscation techniquesDeep learningCybersecurityMachine learningMemory dump

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.