Abstract
Protein pocket matching, or binding site comparison, is of importance in drug discovery. Identification of similar binding pockets can help guide efforts for hit-finding, understanding polypharmacology, and characterization of protein function. The design of pocket matching methods has traditionally involved much intuition and has employed a broad variety of algorithms and representations of the input protein structures. We regard the high heterogeneity of past work and the recent availability of large-scale benchmarks as an indicator that a data-driven approach may provide a new perspective. We propose DeeplyTough, a convolutional neural network that encodes a three-dimensional representation of protein pockets into descriptor vectors that may be compared efficiently in an alignment-free manner by computing pairwise Euclidean distances. The network is trained with supervision (i) to provide similar pockets with similar descriptors, (ii) to separate the descriptors of dissimilar pockets by a minimum margin, and (iii) to achieve robustness to nuisance variations. We evaluate our method using three large-scale benchmark datasets, on which it demonstrates excellent performance for held-out data coming from the training distribution and competitive performance when the trained network is required to generalize to datasets constructed independently. DeeplyTough is available at https://github.com/BenevolentAI/DeeplyTough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.