Abstract

Abstract. Subducted continental terranes commonly comprise an assembly of subunits that reflect the different tectono-metamorphic histories they experienced in the subduction zone. Our challenge is to unravel how, when, and in which part of the subduction zone these subunits were juxtaposed. Petrochronology offers powerful tools to decipher pressure–temperature–time (P–T–t) histories of metamorphic rocks that preserve a record of several stages of transformation. A major issue is that the driving forces for re-equilibration at high pressure are not well understood. For example, continental granulite terrains subducted to mantle depths frequently show only partial and localized eclogitization. The Sesia Zone (NW Italy) is exceptional because it comprises several continental subunits in which eclogitic rocks predominate and high-pressure (HP) assemblages almost completely replaced the Permian granulite protoliths. This field-based study comprises both main complexes of the Sesia terrane, covering some of the recently recognized tectonic subunits involved in its assembly; hence our data constrain the HP tectonics that formed the Sesia Zone. We used a petrochronological approach consisting of petrographic and microstructural analysis linked with thermodynamic modelling and U–Th–Pb age dating to reconstruct the P–T–t trajectories of these tectonic subunits. Our study documents when and under what conditions re-equilibration took place. Results constrain the main stages of mineral growth and deformation, associated with fluid influx that occurred in the subduction channel. In the Internal Complex (IC), pulses of fluid percolated at eclogite facies conditions between 77 and 55 Ma with the HP conditions reaching ∼ 2 GPa and 600–670 °C. By contrast, the External Complex (EC) records a lower pressure peak of ∼ 0.8 GPa for 500 °C at ∼ 63 Ma. The juxtaposition of the two complexes occurred during exhumation, probably at ∼ 0.8 GPa and 350 °C; the timing is constrained between 46 and 38 Ma. Mean vertical exhumation velocities are constrained between 0.9 and 5.1 mm year−1 for the IC, up to its juxtaposition with the EC. Exhumation to the surface occurred before 32 Ma, as constrained by the overlying Biella Volcanic Suite, at a mean vertical velocity between 1.6 and 4 mm year−1. These findings constrain the processes responsible for the assembly and exhumation of HP continental subunits, thus adding to our understanding of how continental terranes behave during subduction.

Highlights

  • The behaviour of continental crust subducted to highpressure (HP) conditions is far from fully understood (Rubatto and Hermann, 2001; Brun and Faccenna, 2008; Kylander-Clark et al, 2008; Malusà et al, 2011; Angiboust et al, 2017)

  • The present paper provides P –T –t data for the central Sesia Zone, documenting in particular when and under what conditions the two main complexes of this HP terrain were juxtaposed during the Alpine orogenic cycle

  • – Comparing the two main complexes, diverse metamorphic evolutions emerge between 77 and 55 Ma, with conditions of 1.6–2 GPa and 600–670 ◦C in the Internal Complex, whereas only 0.7–0.9 GPa and ∼ 500 ◦C appear to have been reached in the External Complex

Read more

Summary

Introduction

The behaviour of continental crust subducted to highpressure (HP) conditions is far from fully understood (Rubatto and Hermann, 2001; Brun and Faccenna, 2008; Kylander-Clark et al, 2008; Malusà et al, 2011; Angiboust et al, 2017). Orogens that contain exhumed continental HP rocks offer opportunities to investigate some of the tectono-metamorphic processes involved, notably those responsible for the return flow of continental fragments back to the surface. Rubatto et al, 2011; Regis et al, 2014) has led to two possible endmember scenarios for the subduction of continental domains to Published by Copernicus Publications on behalf of the European Geosciences Union. F. Giuntoli et al.: Deeply subducted continental fragments – Part 2

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call