Abstract

AbstractSeismic reflection data image now‐buried and inactive volcanoes, both onshore and along the submarine portions of continental margins. However, the impact that these volcanoes have on later, post‐eruption fluid flow events (e.g., hydrocarbon migration and accumulation) is poorly understood. Determining how buried volcanoes and their underlying plumbing systems influence subsurface fluid or gas flow, or form traps for hydrocarbon accumulations, is critical to de‐risk hydrocarbon exploration and production. Here, we focus on evaluating how buried volcanoes affect the bulk permeability of hydrocarbon seals, and channel and focus hydrocarbons. We use high‐resolution 3D seismic reflection and borehole data from the northern South China Sea to show how ca. <10 km wide, ca. <590 m high Miocene volcanoes, buried several kilometres (ca. 1.9 km) below the seabed and fed by a sub‐volcanic plumbing system that exploited rift‐related faults: (i) acted as long‐lived migration pathways, and perhaps reservoirs, for hydrocarbons generated from even more deeply buried (ca. 8–10 km) source rocks; and (ii) instigated differential compaction and doming of the overburden during subsequent burial, producing extensional faults that breached regional seal rocks. Considering that volcanism and related deformation are both common on many magma‐rich passive margins, the interplay between the magmatic products and hydrocarbon migration documented here may be more common than currently thought. Our results demonstrate that now‐buried and inactive volcanoes can locally degrade hydrocarbon reservoir seals and control the migration of hydrocarbon‐rich fluids and gas. These fluids and gases can migrate into and be stored in shallower reservoirs, where they may then represent geohazards to drilling and impact slope stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.