Abstract

AbstractBismuth sulfide (Bi2S3) nanomaterials are emerging as a promising theranostic platform for computed tomography imaging and photothermal therapy of cancer. Herein, the photothermal properties of Bi2S3 nanorods (NRs) were unveiled to intensely correlate to their intrinsic deep‐level defects (DLDs) that potentially could work as electron–hole nonradiative recombination centers to promote phonon production, ultimately leading to photothermal performance. Bi2S3‐Au heterojunction NRs were designed to hold more significant DLD properties, exhibiting more potent photothermal performance than Bi2S3 NRs. Under 808 nm laser irradiation, Bi2S3‐Au NRs could trigger higher cellular heat shock protein 70 expression and more apoptotic cells than Bi2S3 NRs, and caused severe cell death and tumor growth inhibition, showing great potential for photothermal therapy of cancer guided by computed tomography imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.