Abstract
Recently, many deep-learning techniques have been applied to various weather-related prediction tasks, including precipitation nowcasting (i.e., predicting precipitation levels and locations in the near future). Most existing deep-learning-based approaches for precipitation nowcasting, however, consider only radar and/or satellite images as inputs, and meteorological observations collected from ground weather stations, which are sparsely located, are relatively unexplored. In this paper, we propose ASOC, a novel attentive method for effectively exploiting ground-based meteorological observations from multiple weather stations. ASOC is designed to capture temporal dynamics of the observations and also contextual relationships between them. ASOC is easily combined with existing image-based precipitation nowcasting models without changing their architectures. We show that such a combination improves the average critical success index (CSI) of predicting heavy (at least 10 mm/hr) and light (at least 1 mm/hr) rainfall events at 1–6 hr lead times by 5.7%, compared to the original image-based model, using the radar images and ground-based observations around South Korea collected from 2014 to 2020.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.