Abstract
With the development of artificial intelligence, deep-learning-based cryptanalysis has been actively studied. There are many cryptanalysis techniques. Among them, cryptanalysis was performed to recover the secret key used for cryptography encryption using known plaintext. In this paper, we propose a cryptanalysis method based on state-of-art deep learning technologies (e.g., residual connections and gated linear units) for lightweight block ciphers (e.g., S-DES, S-AES, and S-SPECK). The number of parameters required for training is significantly reduced by 93.16%, and the average of bit accuracy probability increased by about 5.3% compared with previous the-state-of-art work. In addition, cryptanalysis for S-AES and S-SPECK was possible with up to 12-bit and 6-bit keys, respectively. Through this experiment, we confirmed that the-state-of-art deep-learning-based key recovery techniques for modern cryptography algorithms with the full round and the full key are practically infeasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.