Abstract

Isotropic 3D histological imaging of large biological specimens is highly desired but remains highly challenging to current fluorescence microscopy technique. Here we present a new method, termed deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM), to enable fast, isotropic light-sheet fluorescence imaging on a conventional wide-field microscope. After integrating a minimized add-on device that transforms an inverted microscope into a 3D light-sheet microscope, we further integrate a deep neural network (DNN) procedure to quickly restore the ambiguous z-reconstructed planes that suffer from still insufficient axial resolution of light-sheet illumination, thereby achieving isotropic 3D imaging of thick biological specimens at single-cell resolution. We apply this easy and cost-effective Deep-SLAM approach to the anatomical imaging of single neurons in a meso-scale mouse brain, demonstrating its potential for readily converting commonly-used commercialized 2D microscopes to high-throughput 3D imaging, which is previously exclusive for high-end microscopy implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.