Abstract
Seismic velocity is one of the most important parameters used in seismic exploration. Accurate velocity models are the key prerequisites for reverse time migration and other high-resolution seismic imaging techniques. Such velocity information has traditionally been derived by tomography or full-waveform inversion (FWI), which are time consuming and computationally expensive, and they rely heavily on human interaction and quality control. We have investigated a novel method based on the supervised deep fully convolutional neural network for velocity-model building directly from raw seismograms. Unlike the conventional inversion method based on physical models, supervised deep-learning methods are based on big-data training rather than prior-knowledge assumptions. During the training stage, the network establishes a nonlinear projection from the multishot seismic data to the corresponding velocity models. During the prediction stage, the trained network can be used to estimate the velocity models from the new input seismic data. One key characteristic of the deep-learning method is that it can automatically extract multilayer useful features without the need for human-curated activities and an initial velocity setup. The data-driven method usually requires more time during the training stage, and actual predictions take less time, with only seconds needed. Therefore, the computational time of geophysical inversions, including real-time inversions, can be dramatically reduced once a good generalized network is built. By using numerical experiments on synthetic models, the promising performance of our proposed method is shown in comparison with conventional FWI even when the input data are in more realistic scenarios. We have also evaluated deep-learning methods, the training data set, the lack of low frequencies, and the advantages and disadvantages of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.