Abstract

The present paper aims to develop a deep--learning framework able to predict distributed quantities of aircrafts flying in transonic regime, which are critical for the determination of aerodynamic loads and aeroelastic analysis. Angle of attack and Mach number are chosen as the two independent parameters for the reduced--order models. A comparative assessment of the proposed non--linear model is made with Proper Orthogonal Decomposition approach in order to highlight strengths and weaknesses of each method. The accuracy of the data--driven machine--learning method in modelling steady--state aerodynamics is assessed with three benchmark cases of 3D--wings in transonic regime. Despite the challenges of the analyzed scenarios, promising results are obtained for each test case, showing the effectiveness of the model implemented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.