Abstract
Optical coherence tomography (OCT) can provide exquisite details of tissue microstructure without traditional tissue sectioning, with potential diagnostic and intraoperative applications in a variety of clinical areas. In thyroid surgery, OCT could provide information to reduce the risk of damaging normal tissue. Thyroid tissue's follicular structure alters in case of various pathologies including the non-malignant ones which can be imaged using OCT. The success of deep learning for medical image analysis encourages its application on OCT thyroid images for quantitative analysis of tissue microstructure. To investigate the potential of a deep learning approach to segment the follicular structure in OCT images, a 2D U-Net was trained on b-scan OCT images acquired from ex vivo adult human thyroid samples a effected by a range of pathologies. Results on a pool of 104 annotated images showed a mean Dice score of 0.74±0.19 and 0.92±0.09 when segmenting the follicular structure and the surrounding tissue on the test dataset (n=10 images). This study shows that a deep learning approach for tissue microstructure segmentation in OCT images is possible. The achieved performance without requiring manual intervention encourages the application of a deep-learning method for real-time analysis of OCT data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.