Abstract
The receptor for advanced glycation end products (RAGE) has been identified as a therapeutic target in a host of pathological diseases, including Alzheimer’s disease. RAGE is a target with no crystallographic data on inhibitors in complex with RAGE, multiple hypothesized binding modes, and small amounts of activity data. The main objective of this study was to demonstrate the efficacy of deep-learning (DL) techniques on small bioactivity datasets, and to identify candidate inhibitors of RAGE. We applied transfer learning in the form of a semi-supervised molecular representation in order to address small dataset problems. To validate the candidate inhibitors, we examined them using more computationally expensive pharmacophore-modeling and docking techniques. We created a strong classifier of RAGE activity, producing 79 candidate inhibitors. These candidates agreed with docking models and were shown to have no significant statistical difference from pharmacophore-based results. The transfer-learning techniques used allow DL to generalize chemical features from small bioactivity datasets to a broader library of compounds with high accuracy. Furthermore, the DL model is able to handle multiple binding modes without explicit instructions. Our results demonstrate the potential of a broad family of DL techniques on bioactivity predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.