Abstract
Enhancers are vital cis-regulatory elements that regulate gene expression. Enhancer RNAs (eRNAs), a type of long noncoding RNAs, are transcribed from enhancer regions in the genome. The tissue-specific expression of eRNAs is crucial in the regulation of gene expression and cancer development. The methods that identify eRNAs based solely on genomic sequence data have high error rates because they do not account for tissue specificity. Specific histone modifications associated with eRNAs offer valuable information for their identification. However, identification of eRNAs using histone modification data requires the use of both RNA-seq and histone modification data. Unfortunately, many public datasets contain only one of these components, which impedes the accurate identification of eRNAs. We introduce DeepITEH, a deep learning framework that leverages RNA-seq data and histone modification data from multiple samples of the same tissue to enhance the accuracy of identifying eRNAs. Specifically, deepITEH initially categorizes eRNAs into two classes, namely, regularly expressed eRNAs and accidental eRNAs, using histone modification data from multiple samples of the same tissue. Thereafter, it integrates both sequence and histone modification features to identify eRNAs in specific tissues. To evaluate the performance of DeepITEH, we compared it with four existing state-of-the-art enhancer prediction methods, SeqPose, iEnhancer-RD, LSTMAtt, and FRL, on four normal tissues and four cancer tissues. Remarkably, seven of these tissues demonstrated a substantially improved specific eRNA prediction performance with DeepITEH, when compared with other methods. Our findings suggest that DeepITEH can effectively predict potential eRNAs on the human genome, providing insights for studying the eRNA function in cancer. The source code and dataset of DeepITEH have been uploaded to https://github.com/lyli1013/DeepITEH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.