Abstract

Computing or approximating the convex hull of a dataset plays a role in a wide range of applications, including economics, statistics, and physics, to name just a few. However, convex hull computation and approximation is exponentially complex, in terms of both memory and computation, as the ambient space dimension increases. In this paper, we propose DeepHull, a new convex hull approximation algorithm based on convex deep networks (DNs) with continuous piecewise-affine nonlinearities and nonnegative weights. The idea is that binary classification between true data samples and adversarially generated samples with such a DN naturally induces a polytope decision boundary that approximates the true data convex hull. A range of exploratory experiments demonstrates that DeepHull efficiently produces a meaningful convex hull approximation, even in a high-dimensional ambient space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.