Abstract

Human leukocyte antigen (HLA) is closely involved in regulating the human immune system. Despite great advance in detecting classical HLA Class I binders, there are few methods or toolkits for recognizing non-classical HLA Class I binders. To fill in this gap, we have developed a deep learning-based tool called DeepHLAPred. The DeepHLAPred used electron-ion interaction pseudo potential, integer numerical mapping and accumulated amino acid frequency as initial representation of non-classical HLA binder sequence. The deep learning module was used to further refine high-level representations. The deep learning module comprised two parallel convolutional neural networks, each followed by maximum pooling layer, dropout layer, and bi-directional long short-term memory network. The experimental results showed that the DeepHLAPred reached the state-of-the-art performanceson the cross-validation test and the independent test. The extensive test demonstrated the rationality of the DeepHLAPred. We further analyzed sequence pattern of non-classical HLA class I binders by information entropy. The information entropy of non-classical HLA binder sequence implied sequence pattern to a certain extent. In addition, we have developed a user-friendly webserver for convenient use, which is available at http://www.biolscience.cn/DeepHLApred/. The tool and the analysis is helpful to detect non-classical HLA Class I binder. The source code and data is available at https://github.com/tangxingyu0/DeepHLApred.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.