Abstract

Blockade of the human ether-à-go-go-related gene (hERG) channel by small compounds causes a prolonged QT interval that can lead to severe cardiotoxicity and is a major cause of the many failures in drug development. Thus, evaluating the hERG-blocking activity of small compounds is important for successful drug development. To this end, various computational prediction tools have been developed, but their prediction performances in terms of sensitivity and negative predictive value (NPV) need to be improved to reduce false negative predictions. We propose a computational framework, DeepHIT, which predicts hERG blockers and non-blockers for input compounds. For the development of DeepHIT, we generated a large-scale gold-standard dataset, which includes 6632 hERG blockers and 7808 hERG non-blockers. DeepHIT is designed to contain three deep learning models to improve sensitivity and NPV, which, in turn, produce fewer false negative predictions. DeepHIT outperforms currently available tools in terms of accuracy (0.773), MCC (0.476), sensitivity (0.833) and NPV (0.643) on an external test dataset. We also developed an in silico chemical transformation module that generates virtual compounds from a seed compound, based on the known chemical transformation patterns. As a proof-of-concept study, we identified novel urotensin II receptor (UT) antagonists without hERG-blocking activity derived from a seed compound of a previously reported UT antagonist (KR-36676) with a strong hERG-blocking activity. In summary, DeepHIT will serve as a useful tool to predict hERG-induced cardiotoxicity of small compounds in the early stages of drug discovery and development. https://bitbucket.org/krictai/deephit and https://bitbucket.org/krictai/chemtrans. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.