Abstract
Heart rate (HR) estimation based on photoplethysmography (PPG) signals has been widely adopted in wrist-worn devices. However, the motion artifacts caused by the user’s physical activities make it difficult to get the accurate HR estimation from contaminated PPG signals. Although many signal processing methods have been proposed to address this challenge, they are often highly optimized for specific scenarios, making them impractical in real-world settings where a user may perform a wide range of physical activities. In this article, we propose DeepHeart, a new HR estimation approach that features deep-learning-based denoising and spectrum-analysis-based calibration. DeepHeart generates clean PPG signals from electrocardiogram signals based on a training data set. Then a set of denoising convolutional neural networks (DCNNs) are trained with the contaminated PPG signals and their corresponding clean PPG signals. Contaminated PPG signals are then denoised by an ensemble of DCNNs and a spectrum-analysis-based calibration is performed to estimate the final HR. We evaluate DeepHeart on the IEEE Signal Processing Cup training data set with 12 records collected during various physical activities. DeepHeart achieves an average absolute error of 1.61 beats per minute (bpm), outperforming a state-of-the-art deep learning approach (4 bpm) and a classical signal processing approach (2.34 bpm).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.