Abstract

BackgroundResting state fMRI has emerged as a popular neuroimaging method for automated recognition and classification of brain disorders. Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common brain disorders affecting young children, yet its underlying mechanism is not completely understood and its diagnosis is mainly dependent on behaviour analysis. New methodIn this paper, we propose an end-to-end deep learning architecture to diagnose ADHD. Our aim is to (1) automatically classify a subject as ADHD or healthy control, and (2) demonstrate the importance of functional connectivity to increase classification accuracy and provide interpretable results. The proposed method, called DeepFMRI, is comprised of three sequential networks, namely (1) a feature extractor, (2) a functional connectivity network, and (3) a classification network. The model takes fMRI pre-processed time-series signals as input and outputs a diagnosis, and is trained end-to-end using back-propagation. ResultsExperimental results on the publicly available ADHD-200 dataset demonstrate that this innovative method outperforms previous state-of-the-art. Different imaging sites contributed the data to the ADHD-200 dataset. For the New York University imaging site, our proposed method was able to achieve classification accuracy of 73.1% (specificity 91.6%, sensitivity 65.5%). Comparison with existing methodsIn this work, we propose a novel end-to-end deep learning method incorporating functional connectivity for the classification of ADHD. To the best of our knowledge, this has not been explored by existing studies. ConclusionsThe results suggest that the proposed end-to-end deep learning architecture achieves better performance as compared to the other state-of-the-art methods. The findings suggest that the frontal lobe contains the most discriminative power towards the classification of ADHD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.