Abstract

AbstractThis study reports the use of deep‐eutectic‐solvent‐ (DES‐) assisted hydrothermal carbonization (HTC) to disrupt the floc structure of sewage sludge (SS) for deep carbonization, with the resulting hydrochars employed in the preparation of formaldehyde‐free plywood bioadhesives. Sewage‐sludge‐based bioadhesive exhibits an excellent wet shear strength, complying with the requirements of Chinese national standard GB/T 9846–2015 (≥0.7 MPa). The molecular weight of proteins and the formation of covalent bonds via dehydration have a notable role in improving adhesive performance (wet shear strength). The Maillard reaction is a key reaction during HTC to destroy the secondary structure of proteins, resulting in the release of more OH and NH2. The main reaction during hot‐press treatment is dehydration. High ash content in bioadhesives improves flame resistance potential, particularly on addition of DES. A plausible mechanism is proposed for this. This work provides a new method for the valorization of SS‐derived hydrochars and contributes to the development of greener formaldehyde‐free wood bioadhesives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.