Abstract
The production of renewable fuels as biodiesel and bio-jet fuel is usually originated by the transformation and processing of oleaginous feedstocks, mainly composed of triacylglycerols. Currently, a significant part of the triacylglycerol production relies on grassy oil crops or other woody oil plants, representing more than 120 million metric tons every year. Considering that the worldwide triacylglycerol demand is expected to rise in the future, alternative routes are necessary to ensure a sustainable biodiesel industry and limit diesel price volatility. In this context, the use of animal fats could be an interesting alternative for biodiesel production as the production of animal byproducts represents nearly 17 million tons per year in the European Union only (2020). Animal fats, however, contain large amounts of no-esterified fatty acids and other oxygen compounds, reducing the yield of biodiesel. Therefore, a specific pretreatment is needed before the trans-esterification process. The setup of such appropriate pretreatments requires detailed upstream characterization of the minor components present in the feedstock. For this purpose, the minor component profile of animal fat was investigated by comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry. This was preceded by an innovative sample fractionation and focalization of these minor components by a preparative liquid chromatographic column method. The overall method permitted to extract different levels of information from the two-dimensional chromatograms, leading to a tentative identification of more than 150 compounds, mainly oxygenated, belonging to different chemical classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.