Abstract
The idea of combining the high representational power of deep learning techniques with clustering methods has gained much attention in recent years. Optimizing a clustering objective and the dataset representation simultaneously has been shown to be advantageous over separately optimizing them. So far, however, all proposed methods have been using a flat clustering strategy, with the actual number of clusters known a priori. In this paper, we propose the Deep Embedded Cluster Tree (DeepECT), the first divisive hierarchical embedded clustering method. The cluster tree does not need to know the actual number of clusters during optimization. Instead, the level of detail to be analyzed can be chosen afterward and for each sub-tree separately. An optional data-augmentation-based extension allows DeepECT to ignore prior-known invariances of the dataset, such as affine transformations in image data. We evaluate and show the advantages of DeepECT in extensive experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.