Abstract

Agriculture plays a significant role in every nation's economy by producing crops. Plant disease identification is one of the most important aspects of maintaining an agriculturally developed nation. The timely and efficient detection of plant diseases is essential for a healthy and productive agricultural sector and to prevent wasting money and other resources. Various diseases that could affect a plant cause crop farmers to lose a substantial sum yearly. Deep learning can play a crucial role in helping farmers prevent crop failure by early disease detection in plant leaves. In the experiment, we examined CNN, VGG-16, VGG-19 and ResNet-50 models on plant-village 10000 image dataset to detect crop infection and got the accuracy rate of 98.60%, 92.39%, 96.15%, and 98.98% for CNN, VGG-16, VGG-19 and ResNet-50 respectively. The study indicates that ResNet-50 outperforms the other models with an accuracy of 98.98%. So, the ResNet50 model was chosen to be developed into a smart web application for real-life crop disease prediction. The proposed web application aims to assist farmers in identifying diseases of plants by analyzing photos of the plant leaves. The proposed application uses the ResNet50 transfer learning model at its heart to distinguish healthy and infected leaves and classify the present disease type. The goal is to help farmers save resources and prevent economic loss by detecting plant diseases early and applying the appropriate treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.