Abstract

Background and objectiveAutomatic cardiac left ventricle (LV) quantification plays an important role in assessing cardiac function. Although many advanced methods have been put forward to quantify related LV parameters, automatic cardiac LV quantification is still a challenge task due to the anatomy construction complexity of heart. MethodsIn this work, we propose a novel deep multi-task conditional quantification learning model (DeepCQ) which contains Segmentation module, Quantification encoder, and Dynamic analysis module. Besides, we also use task uncertainty loss function to update the parameters of the network in training. ResultsThe proposed framework is validated on the dataset from Left Ventricle Full Quantification Challenge MICCAI 2018 (https://lvquan18.github.io/). The experimental results show that DeepCQ outperforms the other advanced methods. ConclusionsIt illustrates that our method has a great potential in comprehensive cardiac function assessment and could play an auxiliary role in clinicians’ diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.