Abstract
Gene transcription is an essential process involved in all aspects of cellular functions with significant impact on biological traits and diseases. This process is tightly regulated by multiple elements that co-operate to jointly modulate the transcription levels of target genes. To decipher the complicated regulatory network, we present a novel multi-view attention-based deep neural network that models the relationship between genetic, epigenetic, and transcriptional patterns and identifies co-operative regulatory elements (COREs). We applied this new method, named DeepCORE, to predict transcriptomes in various tissues and cell lines, which outperformed the state-of-the-art algorithms. Furthermore, DeepCORE contains an interpreter that extracts the attention values embedded in the deep neural network, maps the attended regions to putative regulatory elements, and infers COREs based on correlated attentions. The identified COREs are significantly enriched with known promoters and enhancers. Novel regulatory elements discovered by DeepCORE showed epigenetic signatures consistent with the status of histone modification marks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and structural biotechnology journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.