Abstract

AbstractTo date, researchers face a huge challenge in synthesizing blue perovskite quantum dots (PQDs) with short‐chain ligands since the short‐chain ligands increase the polarity and decrease solubility in common non‐polar solvents during syntheses. The use of polar solvents to replace non‐polar ones may solve the solution problem, but polar solvents will decompose PQDs. So, the key to successful synthesis of PQDs with short‐chain ligands is to find polar solvents that can dissolve short‐chain ligands well and do not destroy perovskites concurrently. Herein, a room‐temperature synthesis method for deep‐blue CsPbBr3 PQDs with short‐chain ligands is proposed by using eco‐friendly ethyl acetate polar solvent. CsPbBr3 PQDs with an average size of 3.87 nm and a peak wavelength of 454 nm are synthesized with a photoluminescence quantum yield of 48.4%. With an interlayer modification to the hole transport layer, the deep‐blue perovskite light‐emitting diodes realize a maximum external quantum efficiency of 4.39% and half‐lifetime of 4.5 min at a maximum brightness of 72 cd m−2. This work offers a novel eco‐friendly avenue for the preparation of effective PQDs including blue ones, which will accelerate commercialization of PQDs in lighting and HD full‐color displays as well as reduce discharge of solvent pollutants and protect the global environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.