Abstract

It’s important to infer the binding site of RNA-binding proteins (RBP) for understanding the interaction between RBP and its RNA targets and decipher the mechanisms of transcriptional regulation. However, experimental detection of RBP binding sites is still time-intensive and expensive. Algorithms based on machine learning can speed up detection of RBP binding sites. In this article, we propose a new deep learning method, DeepA-RBPBS, which can use RNA sequences and structural features to predict RBP binding site. DeepA-RBPBS uses CNN and BiGRU to extract sequences and structural features without long-term dependence issues. It also utilizes an attention mechanism to enhance the contribution of key features. The comparison shows that the performance of DeepA-RBPBS is better than that of the state-of-the-art predictors. In the testing on 31 datasets of CLIP-seq experiments over 19 proteins, MCC (AUC) is 8% (5%) higher than those of the latest method based on deep learning, iDeepS. We also apply DeepA-RBPBS to the target RNA data of RBPs related to diabetes (LIN28, RBFOX2, FTO, IGF2BP2, CELF1 and HuR). The results show that DeepA-RBPBS correctly predicted 41,693 samples, where iDeepS predicted 31,381 samples. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call